

NCCN Guidelines Version 2.2019 BRCA-Related Breast and/or Ovarian Cancer Syndrome

NCCN Guidelines Index
Table of Contents
Discussion

Next Generation Sequencing replacing Sanger Sequencing ...

- Lower cost
- Faster
- More genes at the same price

Next-Generation Sequencing of the *BRCA1* and *BRCA2* Genes for the Genetic Diagnostics of Hereditary Breast and/or Ovarian Cancer

Daniel Trujillano, * Maximilian E.R. Weiss, * Juliane Schneider, * Julia Köster, * Efstathios B. Papachristos, * Viatcheslav Saviouk, * Tetyana Zakharkina, * Nahid Nahavandi, * Lejla Kovacevic, * and Arndt Rolfs * †

From Centogene AG,* Rostock; and the Albrecht-Kossel-Institute for Neuroregeneration,† Medical University Rostock, Rostock, Germany

Accepted for publication November 25, 2014.

Address correspondence to Daniel Trujillano, Ph.D., Centogene AG, Schillingallee 68, 18057 Rostock, Germany. E-mail: daniel.trujillano@ centogene.com.

Genetic testing for hereditary breast and/or ovarian cancer mostly relies on laborious molecular tools that use Sanger sequencing to scan for mutations in the BRCA1 and BRCA2 genes. We explored a more efficient genetic screening strategy based on next-generation sequencing of the BRCA1 and BRCA2 genes in 210 hereditary breast and/or ovarian cancer patients. We first validated this approach in a cohort of 115 samples with previously known BRCA1 and BRCA2 mutations and polymorphisms. Genomic DNA was amplified using the Ion AmpliSeg BRCA1 and BRCA2 panel. The DNA Libraries were pooled, barcoded, and sequenced using an Ion Torrent Personal Genome Machine sequencer. The combination of different robust bioinformatics tools allowed detection of all previously known pathogenic mutations and polymorphisms in the 115 samples, without detecting spurious pathogenic calls. We then used the same assay in a discovery cohort of 95 uncharacterized hereditary breast and/or ovarian cancer patients for BRCA1 and BRCA2. In addition, we describe the allelic frequencies across 210 hereditary breast and/or ovarian cancer patients of 74 unique definitely and likely pathogenic and uncertain BRCA1 and BRCA2 variants, some of which have not been previously annotated in the public databases. Targeted next-generation sequencing is ready to substitute classic molecular methods to perform genetic testing on the BRCA1 and BRCA2 genes and provides a greater opportunity for more comprehensive testing of at-risk patients. (J Mol Diagn 2015, 17: 162-170; http://dx.doi.org/10.1016/j.jmoldx.2014.11.004)

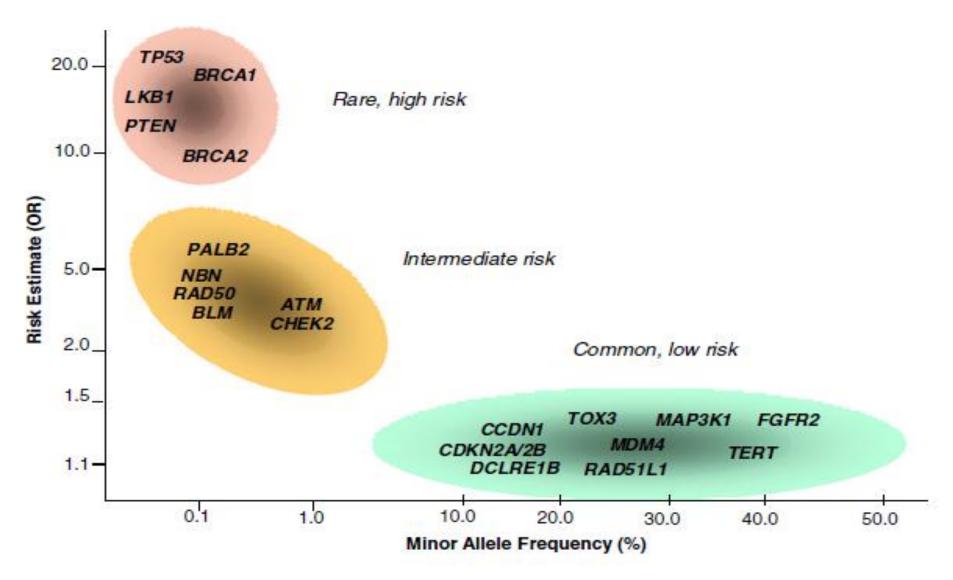
Presentation Outline

HBOC – Criteria for genetic testing

Testing Options & how do you decide?

Understanding the Genetic Test Report & Next Steps

Our results of BRCA testing from India


Genetics of HBOC

 Around 10% of all breast cancer patients have germline mutations in one of several different genes.

>50% of pathogenic variants are in BRCA1 and BRCA2 genes

 Other genes like TP53, PTEN (high penetrance) and CHEK2, ATM (moderate penetrance) are found to mostly carry pathogenic variants in high risk cohorts

Management guidelines exist only for a few of the genes implicated

Bogdanova et al. Hereditary Cancer in Clinical Practice 2013

• Who should be offered referral for genetic counselling and/or genetic testing?

- Multiple cases of breast and/or ovarian cancer in family
 - closely related relatives
 - more than one generation
 - Breast cancer diagnosed at < age 50
 - Family member with both breast and ovarian cancers
- Breast cancer diagnosed at age < 45
- Personal history of ovarian cancer
- History of male breast cancer in the family
- Triple negative breast cancer
- Pancreatic cancer with breast or ovarian cancer in the same individual or on the same side of the family
- Previously identified pathogenic BRCA1/2 variant in the family

BRCA1 and BRCA2 Associated Cancers & Penetrance

Cancer Type	General Population Risk	Mutation Risk	
		BRCA1	BRCA2
Breast	12% (in India 5-8%)	50%-80%	40%-70%
Second primary breast	3.5% within 5 years Up to 11%	27% within 5 years	12% within 5 years 40%-50% at 20 years
Ovarian	1%-2%	24%-40%	11%-18%
Male breast	0.1%	1%-2%	5%-10%
Prostate	15%-18%	<30%	<39%
Pancreatic	0.5%	1%-3%	2%-7%

Testing Options for HBOC

BRCA1/BRCA2

- Sequencing by NGS
- Sanger fill-in to ensure 100% coverage
- Deletion Duplication testing by MLPA included
- Rs 21,420/-

CentoBreast

- ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, NBN, PALB2, PTEN, RAD51C, STK11, TP53 by NGS
- Coberage >99.5% at 20x
- Includes Copy Number
 Variant detection (by NGS)
- Rs 79,600/-

Patient Clinical Information / Familial Mutations Information

Patient Name:						
Date of birth:						
CentoCard Numb						
Personal history of	of cancer lo	hack all th	nat annly)			
No personal hi	•		ас арріу)			
History of brea		CI				
	Diagnosis	years				
	al – Yes / No					
Preme	nopausal – Y	es / No				
Immur	nohistochem	istry Marke	rs: ER – Pos/Neg; PR – Pos/Neg; He	r2 – Pos/Neg		
History of ovar	ian cancer					
	Diagnosis	years				
	athology					
History of any						
Age at	Diagnosis	years				
Family history of	cancer					
No known fam						
	Family history of cancer present (please provide details for parents, grandparents, siblings &					
children below)						
Relationship	Maternal	Paternal	Cancer Site	Age at Diagnosis		
(years)						

BRCA Report Decoded

Result	AKA	Probability of Pathogenicity	Implication	Next Steps
Pathogenic or Likely Pathogenic mutation	Class 1 or Class 2; Positive	P (>99%) & LP (95-99%)	 Susceptibility to HBOC can be confirmed 	 Genetic counseling of the patient and further family members Predictive analysis is now available See HBOC management guidelines
Variant of Uncertain Significance	Class 3; Indeterminate	VUS (5-94.9%)	 Variant has not been reported earlier and we cannot make projections about its pathogenicity 	 Genetic counseling of patient and further family members Testing of other affected family members to establish segregation of the variant in the family Variant Reclassification
Likely Benign or Benign	Class 4 or Class 5; Negative	LB (0.1-4.9%) or Benign (<0.1%)	 Susceptibility to HBOC cannot be confirmed 	 Consider deletion / duplication testing for BRCA Consider testing for other susceptibility genes – (TP53, CDH1, RAD51C, CHEK2 & STK11) Genetic counseling

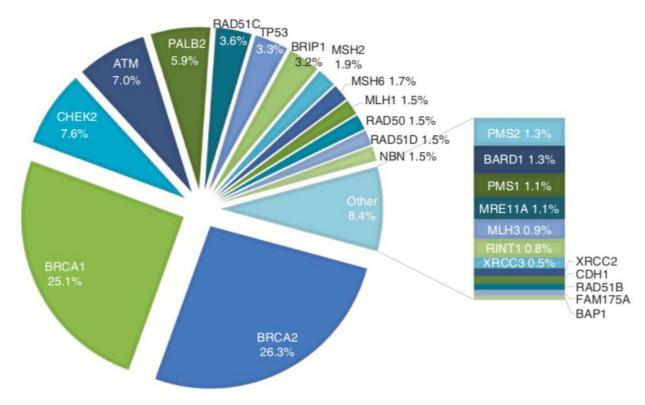
According to NCCN Guideline V.3.2019 Multigene Panels may be considered

- When more than one gene can explain an inherited cancer syndrome.
- In individuals who have tested negative (indeterminate) for a single syndrome, but whose personal or family history remains suggestive of an inherited susceptibility.
- Choosing the right panel is important- specific genes analyzed (as well as classification of variants and many other factors)
- Not all genes included on panel tests are necessarily clinically actionable.
- <u>Increased likelihood of finding variants of unknown significance</u> when testing for multiple genes.
- It is for these and other reasons that <u>multi-gene testing is ideally offered in the context of professional genetic expertise for pre- and post- test counseling.</u>

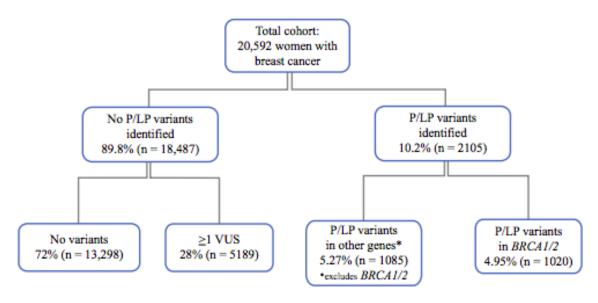
Benefits and Limitations of Multi-gene testing

BENEFITS

- Cost effective
- Overall short TAT compared to serial gene testing
- Increased rate of detection of pathogenic variants
- Improved surveillance for patients found to be carriers for "actionable genes"

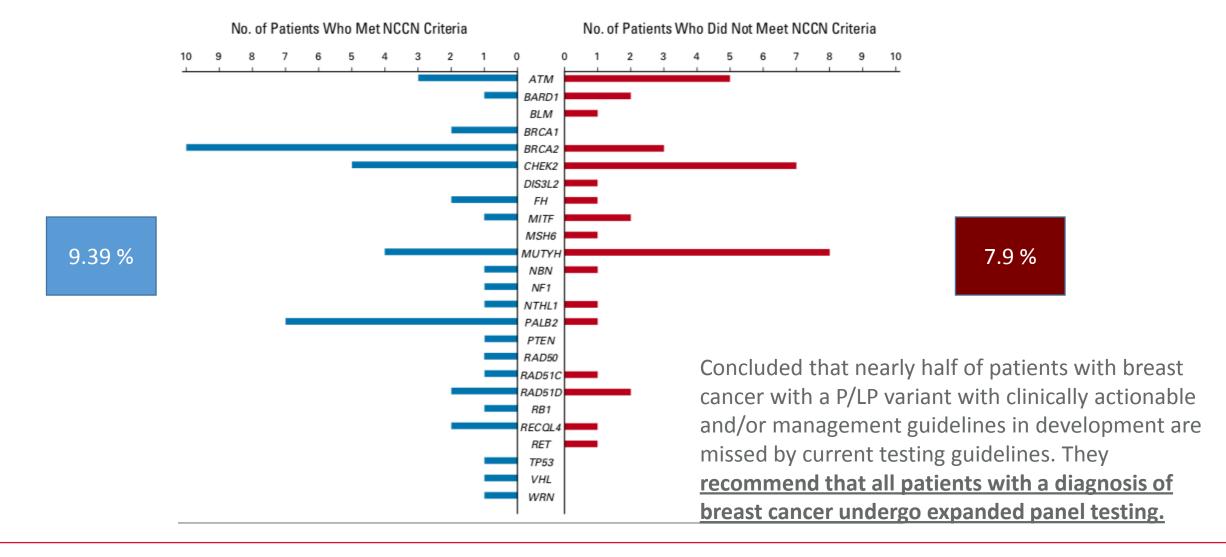

LIMITATIONS

- Patient management recommendations not available for all genes
- In some cases NGS may miss some Pathogenic/ likely pathogenic variants (allele dropout)
- Higher rates of Variants of uncertain significance
- Variants may be identified in >1 gene- adds complexity


Data in support of Multi-gene testing

Castera L et al. 2018 analyzed 4409 patients using a 34 HBOC gene panel. 647 pathogenic variants identified

Depending on the number of genes in a panel and the patients who are tested, VUS rates from panel testing have been reported to range from 6.7%-41.7%


O'Leary et al. 2017 (Commercial Laboratory data published in Ann Surg Oncol)

Study group	No. of patients evaluated	BRCA 1/2 +ve (%)	Non-BRCA +ve (%)
Tung et al. 2015 (14- 21 gene panel)	2000	9.3%	4.2%
Kapoor NS et al.2015 (5-53 gene panel)	966	4%	3.6%
Castera L et al. 2014	708	Detection ra	ate- 15.4%
(27 gene panel)		59%	41%

Beitsch et al. 2018 published a multicenter prospective study on 959 Br Ca patients tested with a 80 gene panel-49.95% met NCCN criteria and 50.05% did not. Over all 8.65% patients had pathogenic/likely pathogenic variants.

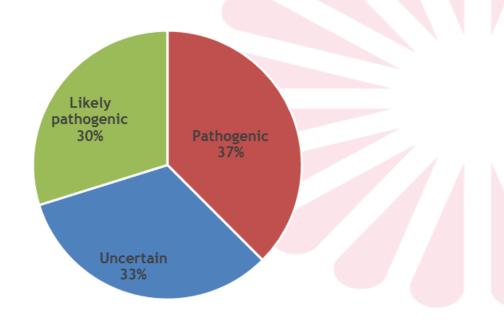
Summary of NCCN recommendations for pathogenic variation carriers

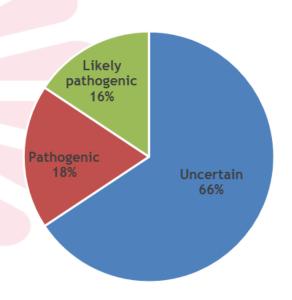
Gene	Breast cancer risk	Ovarian cancer risk	Other cancers	Recommendations for breast/ovarian cancer risk reduction
ATM ¹	Increased	Not increased	Unknown/insufficient evidence for prostate and pancreas cancer	 Annual mammogram/consider breast MRI starting at the age of 40 years Consider RRM (based on family history)
BRCA1	Increased	Increased	Prostate	 Annual mammogram starting at the age of 30 years/annual breast MRI starting at the age of 25 years Consider RRM Recommend RRSO at the age of 35-40 years
BRCA2	Increased	Increased	Prostate, pancreas, melanoma	 Annual mammogram starting at the age of 30 years/annual breast MRI starting at the age of 25 years Consider RRM Recommend RRSO at the age of 35–40 years (can extend to 40–45 years)
BRIP1	Not increased	Increased	N/A	 Consider RRSO at the age of 45–50 years
CDH1	Increased	Not increased	Diffuse gastric cancer	 Annual mammogram/consider breast MRI starting at the age of 30 years Consider RRM (based on family history)
CHEK2 ²	Increased	Not increased	Colon cancer	 Annual mammogram/consider breast MRI starting at the age of 40 years Consider RRM (based on family history)
MSH6	Unknown/insufficient	Not increased	Colorectal cancer, endometrial cancer	Breast cancer management based on family history
NBN ³	Increased	Unknown/insufficient	Unknown/insufficient	 Annual mammogram/consider breast MRI starting at the age of 40 years

Gene	Breast cancer risk	Ovarian cancer risk	Other cancers	Recommendations for breast/ovarian cancer risk reduction
				· Consider RRM (based on family history)
NFI	Increased	Not increased	Gastrointestinal stromal tumors, malignant peripheral nerve sheath tumors	 Annual mammogram starting at the age of 30 years/consider breast MRI starting at the age of 30–50 years Consider RRM (based on family history)
PALB2	Increased	Unknown/insufficient	Unknown/insufficient	 Annual mammogram/consider breast MRI starting at the age of 30 years Consider RRM (based on family history)
PTEN	Increased	Not increased	Thyroid cancer, endometrial cancer	 Annual mammogram/breast MRI starting at the age of 30–35 years Consider RRM
RAD51C	Unknown	Increased	N/A	· Consider RRSO at the age of 45-50 years
RAD51D	Unknown	Increased	N/A	· Consider RRSO at the age of 45-50 years
STK11	Increased	Increased (non-epithelial)	Colorectal cancer	 Annual mammogram/breast MRI starting at the age of 25 years
P53	Increased	Not increased	Adrenocortical carcinoma, leukemia, brain tumors, soft tissue sarcomas	 Annual mammogram starting at the age of 30 years/annual breast MRI starting at the age of 20–29 years Consider RRM

Fountzilas C et al. Multi-gene Panel Testing in Breast Cancer Management. Cancer Treat Res. 2018;173:121-140

Gene	Patients Screened (India)	Cases* (India)	%age (India)	Patient Screened (total)	Cases* (total)	Cases% (total)
BRCA1	1469	261	18%	4479	701	16%
BRCA2	1463	170	12%	4456	495	11%
Grand Total	1473	431	29%	4825	1196	25%


^{*}Case: Indicates an individual where diagnosis was confirmed by genetic testing at Centogene


Clinical and family history spectrum of cases from India					
	BRCA 1 (n = 261)	BRCA 2 (n = 170)			
Abnormality of the breast	102	61			
Abnormality of the ovary	67	24			
Abnormality of other organs	12	4			
Suspected / Affected	6	4			
No information	73	77			

Number of Clinical relevant and uncertain BRCA1 and BRCA2 variants at Centogene

BRCA1	No. of variants (India)	No. of variants (total)
Pathogenic	39	124
Uncertain	34	100
Likely pathogenic	31	72
Total	104	296

BRCA2	No. of variants (India)	No. of variants (total)
Uncertain	67	175
Pathogenic	19	82
Likely pathogenic	16	49
Total	102	306

Take-home Message

For the Clinician

- Record detailed family and personal history in every case of breast, ovarian, colon & endometrial cancer and offer genetic testing in appropriate families
- Multi-gene panels may be considered especially if warranted by personal / family history and specific associated findings. We can expect to see a lot of VUS from cases in India
- Genetic testing offers the possibility of risk evaluation & management even in the presymptomatic stage
- Many patients are quite aware of the possibility of familial cancers and request testing
 but misinformation is widespread
- Germline mutations can be diagnosed easily and have defined inheritance patterns.
- Both Somatic & Germline mutations are useful in guiding management of patients.

For the Gynecologic Oncology Societies

- Issue guidelines for genetic testing in hereditary cancers
- Identify more cases and carriers (present estimate <1%)
- Promote sharing of variant classification to reduce VUS

CONTACT INFORMATION

Sunil Tadepalli

Director, Centogene India

sunil.tadepalli@centogene.com